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Abstract
Recently, ultra-small diameter single wall nanotubes with diameter of ∼0.4 nm
have been produced and many unusual properties were observed, such as
superconductivity, leading to a transition temperature Tc ∼ 15 K, much larger
than that observed in the bundles of larger diameter tubes.

By a comparison between two different approaches, we discuss the issue
of whether a superconducting behaviour in these carbon nanotubes can arise by
a purely electronic mechanism in the armchair geometry. The first approach is
based on the Luttinger model while the second one, which emphasizes the role
of the lattice and short range interaction, is developed starting from the Hubbard
Hamiltonian. By using the latter model we predict a transition temperature of
the same order of magnitude as the measured one.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Carbon nanotubes (CNs) are basically rolled up sheets of graphite (hexagonal networks of
carbon atoms) forming tubes that are only nanometres in diameter and have length up to some
microns. Several experiments in the last 15 years have shown their interesting properties [1].
The nanometric size of CNs, together with the unique electronic structure of a graphene sheet,
make the electronic properties of these one-dimensional (1D) structures highly unusual. In
fact, the electronic properties of CNs depend on their diameter and chiral angle (helicity)
parametrized by a roll-up (wrapping) vector (n, m) [2]. Hence it follows that some nanotubes
are metallic with high electrical conductivity, while others are semiconducting with relatively
low bandgaps. CNs may also display different behaviours depending on whether they are single
walled carbon nanotubes (SWNTs; an individual SWNT has typical dimensions L ∼ 1 µm
and R ∼ 1 nm) or multi-walled carbon nanotubes (MWNTs) that are typically made of several
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(typically 10) concentrically arranged graphene sheets with a radius of about 5 nm and lengths
in the range of 1–100 µm.

In the following we will study the possibility that a superconducting behaviour can arise, at
least in a special class of CNs, by a purely electronic mechanism, i.e. neglecting the contribution
of phonons, but rather concentrating on the effect of rescaling the e–e repulsion for obtaining
superconductivity. Hence, we first review the concept of a Luttinger liquid, in particular
for CNs, with the corresponding interaction range and transport behaviour, before describing
superconducting correlations in CNs.

1.1. The concept of a Luttinger liquid

Electronic correlations have been predicted to dominate the characteristic features in quasi-
one-dimensional (1D) interacting electron systems. These properties, commonly referred to
as Tomonaga–Luttinger liquid (TLL) behaviour [3], are very different from those of a Fermi
liquid, because Landau quasiparticles are unstable and the low energy excitation is achieved
by exciting an infinite number of plasmons (collective electron–hole pair modes), making
the transport intrinsically different. Thus, the electron–electron (e–e) interaction modifies
significantly the transport properties (the conductance G) also of CNs and leads to the formation
of a Luttinger liquid (LL) with properties very different from those of the non-interacting Fermi
gas [3, 4].

1.2. Luttinger liquid behaviour in carbon nanotubes

The LL behaviour implies the power-law dependence of physical quantities, such as for the
tunnelling density of states (DOS), as a function of the energy or the temperature. The
tunnelling conductance G reflects the power law dependence of the DOS in a small bias
experiment [5]

G = dI/dV ∝ T αbulk (1)

for eVb � kBT , where Vb is the bias voltage, T is the temperature and kB is Boltzmann’s
constant. The bulk critical exponent can be obtained in several different ways and has the form

αbulk = 1

4

(
g + 1

g
− 2

)
. (2)

In previous papers [6–8], where we developed a renormalization group (RG) method in order
to study the low energy behaviour of the unscreened e–e interaction in CNs, we obtained

√
1 + U0(qc)

(2πvF)
= 1

g
, (3)

where vF is the Fermi velocity, U0(p) corresponds to the Fourier transform of the 1D e–e
interaction potential, and qc = 2π/L can be assumed as the natural infrared cut-off, depending
on the longitudinal length L of the quasi-1D device. Thus, g is a function of the interaction
strength and g < 1 corresponds to a repulsive interaction. Thus evidence of LL behaviour
has been found in many experiments [9–11] in SWNT [11], where a measurement of the
temperature dependence of the resistance was carried out, above a crossover temperature
Tc [12].
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1.3. Range of the interaction and transport

The crucial role played by the range of the interaction in CNs, in order to explain the LL
behaviour of large multi-wall [6] and doped [7, 8] CNs, was also analysed by using RG
methods. Nevertheless, at T � 1 K the conductance, G, of an SWNT showed typical
Coulomb blockade (CB) peaks in the zero bias G and allowed us to investigate the energy
levels of interacting electrons. In this case, crudely described by the CB mechanism [13],
periodic peaks (Coulomb oscillations) are observed in the conductance as a function of the gate
potential [14, 15].

The effects of a long range interaction have to be observed also in the transport at very low
temperature as we discuss below. In a recent paper [16] we investigated the effects of the long
range terms of the interaction in an SWNT and compared our results with recent experiments at
very low temperature T [17]. In that paper we explained the observed damping in the addition
energy for SWNTs [17] at T ∼ 200 mK as an effect of the long range of the e–e repulsion.

1.4. Superconductivity

Experiments have been also carried out to probe superconducting (SC) correlations in CNs.
Clear evidence of SC correlations was found in a CN attached to suitable contacts [18, 19].
Supercurrents have been observed in the samples with SC electrodes reported in [18], providing
evidence of the proximity effect in the CN. Moreover, SC transitions have been measured in
nanotube ropes attached to highly transparent contacts [20].

Recently, ultra-small diameter SWNTs (diameter ∼ 0.4 nm) have been produced inside
zeolite channels (with inner diameter of ∼0.73 nm). The ultra-small diameter of these
tubes gives them many unusual properties, such as superconductivity, leading to a transition
temperature Tc ≈ 15 K [21], much larger than that observed in bundles of larger diameter
tubes [22].

1.5. The small diameter SC CN

In [21] the nanotube diameter d = 4.2 ± 0.2 Å is closer to the value calculated for a (3, 3) CN
geometry, although the presence of (5, 0) nanotubes cannot be discarded [23]. Next we refer to
these ultra-small nanotubes as US CNs. It has been shown by using the local-density functional
method that the (3, 3) nanotubes have the same band structure of typical armchair nanotubes
near the Fermi level, with a pair of subbands crossing at two opposite momenta [23]. In order
to observe the supercurrents, it is necessary to fabricate thin samples to ensure that there is no
potential barrier within the length of the SWNTs. This is done by further reducing the length
of the CNs to about 50–100 nm, thus we assume, in the following, the length of the US CNs to
be L ∼ 50 nm.

1.6. Electron–phonon assisted superconductivity

These experiments have stimulated a significant amount of work at the theoretical level, in order
to understand the origin of the superconducting transition [24–27], where the electron–phonon
interaction plays a crucial role in the standard superconductivity. In a recent paper [28], the
authors verify that the electron–phonon coupling parameter in the armchair geometry originates
mainly from phonons at q = 2kF and is strongly enhanced when the diameter decreases.



S2118 S Bellucci et al

1.7. Summary

In this paper we want to discuss whether a superconducting behaviour can arise, at least in US
CNs, by a purely electronic mechanism, i.e. from purely repulsive e–e interactions. Thus, we
do not include phonons in our model even if we acknowledge that their contribution could be
relevant. Here we focus on armchair nanotubes, although the presence of zig-zag (5, 0) metallic
nanotubes in the zeolite matrix cannot be discarded.

In order to pursue our aim we investigate the effective range of the e–e interaction because
the rescaling of the e–e repulsion is crucial for obtaining superconductivity. In fact, if we
start from the analysis of the LL theory for an SWNT developed in [4], we find that a
purely electronic mechanism which gives superconductivity needs the screening of the forward
scattering (long range effect), the increasing of the backward scattering (short range effect) and
relevant effects from the lattice (very short range effects).

When the short range component of the electron–electron interaction and the effects
of the lattice cannot be neglected, the usual approach to the Luttinger model breaks down.
Therefore, we have to introduce a model which better describes the very short range term of
the interaction, as well as the localization of the electrons on the lattice, as is the case of the
Hubbard Hamiltonian.

2. Luttinger liquid approach

In order to analyse the effects due to the size of the CNs on their properties we first discuss the
behaviour of SWNTs with a radius rather larger than that of the US CNs.

The LL theory for an SWNT was developed in [4] where the low energy theory including
Coulomb interactions is derived and analysed. It describes two fermion chains without
interchain hopping but coupled in a specific way by the interaction. The strong-coupling
properties are studied by bosonization, and consequences for experiments on single armchair
nanotubes are discussed. The remarkable electronic properties of carbon nanotubes are due
to the special band structure of the π electrons in graphite [29, 30]. The discussion in this
paper is limited to transport through metallic armchair (n, n) SWNTs; in particular, we discuss
the case of the (10, 10) CN with a length L = 3 µm and we name it CN10. Thus we have
the characteristic dispersion relation of a metallic SWNT which exhibits two distinct Fermi
points at �K = (±4π/3a, 0) and α = ± with a right- and a left-moving (r = R/L = ±)
branch around each Fermi point. These branches are highly linear with Fermi velocity
vF ≈ 8 × 105 m s−1. The R- and L-movers arise as linear combinations of the p = ±
sublattice states reflecting the two C atoms in the basis of the honeycomb lattice. The dispersion
relation holds for energy scales E < D, with the bandwidth cut-off scale D ≈ h̄vF/R for
tube radius R. We choose the y-axis points along the tube direction and the circumferential
variable is 0 � x � 2π R, where R = √

3na/2π is the tube radius. The lattice constant is
a = 2.46 Å.

As concerns the interaction we distinguish three processes associated with the Fermi points
±Ks . First, we have ‘forward scattering’ (g2 with small transferred momentum i.e. p ∼ qc).
Second, we have ‘backscattering’ (g1 with large transferred momentum i.e. p ∼ 2Ks). Finally,
at half-filling there is an additional ‘Umklapp’ process that in our case we neglect, since the
sample is assumed to be doped.

An additional ‘Forward scattering’ term ( f ) which measures the difference between intra-
and inter-sublattice interactions, can be introduced following [4]. This term is due to the hard
core of the Coulomb interaction, i.e. it follows from the unscreened short range component of
the interaction.
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Figure 1. Effective field theory was solved in a practically exact way by Egger and Gogolin [4].
They concluded that low temperature phases matter only for ultrathin tubes or in the sub-millikelvin
regime. The temperature Tb depends on the strength of the backward scattering term (g1), Tf

depends on the relevance of the lattice effects while g depends on the forward scattering (usually g2).

2.1. Electron–electron interaction

Now, by following Egger and Gogolin [4], we introduce the unscreened Coulomb interaction
in two dimensions

U0(r − r′) = c0
e2√

(x − x ′)2 + 4R2 sin2( ϕ−ϕ′
2 )

. (4)

Then, we can calculate U0(q) as

U0(q) ≈ c0e2

√
2

[
K0

(
q R

2

)
I0

(
q R

2

)]
, (5)

where K0(q) denotes the modified Bessel function of the second kind, I0(q) is the modified
Bessel function of the first kind and R, the CN’s radius, acts as a natural cut-off of the
interaction. It is clear that the interaction in equation (5) does not contain the effects at very
short range due to the additional forward scattering (f coupling).

2.2. The phase diagram

Effective field theory was solved in a practically exact way by Egger and Gogolin [4]. They
obtained for the CN10 a value of g ≈ 0.2 corresponding to αbulk ≈ 0.32 in agreement with
experiments. They also predict the presence of an SC phase due to the effect of g1 and f , but
at very low temperatures (Tb ∼ 0.1 mK and Tf � Tb; see figure 1).

Starting from these results a pure electronic mechanism which gives superconductivity
needs the following:

(i) screening of the forward scattering, g2 (long range effect g > 0.5);
(ii) increasing of the backward scattering, g1 (short range effect Tb);

(iii) relevant effects from the lattice (high value of the corresponding temperature, Tf).
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Calculations for a CN10 predict that 1D superconductivity is the dominant instability only
at T < 1 mK with screened interactions, thus a purely electronic mechanism is not sufficient.
Can this effect be relevant in US CNs?

3. Effects of the screening

Now we want to discuss some screening effects that can be relevant in CNs by focusing on the
role played by the size and on the reduction of the effective range of the interaction.

3.1. Intratube screening

One electron screening effect can be taken into account by analysing how the interaction dresses
the bare electron propagator with the polarization. The one loop polarizability �0(k, ωk) is
given by the sum of particle–hole contributions within each branch

�0(k, ωk) = 1

h

vFk2

|v2
Fk2 − ω2

k |
. (6)

The effective interaction is found by the Dyson equation:

Ueff(k, ωk) = U0(k)

1 + U0(k)�0(k, ωk)
. (7)

This approximation is well justified in 1D as long as we focus on the long range part of the
interaction (k ∼ qc) [31]. Thus the random phase approximation (RPA) for the dielectric
function follows from the previous formula as

κ(q, ωq) = 1 + U0(q)�0(q, ωq).

In order to investigate the size dependent dielectric function we can introduce the
bandwidth cut-off scale D = vFh̄/R as the scale for the UV cut-off energy. Thus we introduce
the dimensionless frequency ν = ω/(vFq) which ranges from −1/(q R) to 1/(q R) and we
obtain

κ(q) = 1 +
∫ 1/(q R)

−1/(q R)

dν(U0(q)�0(q, ν)) ≈ 1 + U0(q)

2π h̄vF

∣∣∣∣ln
(∣∣∣∣q R + 1

q R − 1

∣∣∣∣
)∣∣∣∣ .

Now we can evaluate the size dependent screening as gi → g̃i = gi/κ , for the different
CNs corresponding to the different processes (here we name g̃i the screened interaction). For
the forward scattering we obtain a size dependent rescaling of the interaction

g2 −→
{

g̃2 = 0.90g2 for CN10

g̃2 = 0.61g2 for USCN.
(8)

Concerning the rescaling of g1 the RPA approximation does not give correct results. In this
case we should resort to the RG technique; anyway, as shown in [4], g1 gets modified only at
very low temperatures.

3.2. Screening by the contacts

Another source of the electron screening comes from the presence of the contacts, and it can
be analysed by the introduction of two charge images.

As we show in figure 2 this kind of screening gives a strong suppression of the long range
component of the interaction (a constant interaction with infinite range is totally erased) while
the short range one is almost unaffected. A size dependent screening of the interaction, greater
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Figure 2. In this figure the e–e repulsion is shown as a function of the electron position in a
CN10. One charge is put at the centre of the CN or at 450 900 and 1300 nm from the centre.
The screening due to the contacts gives a strong suppression of the long range component of the
interaction (a constant interaction with infinite range is totally erased) while the short range one is
almost unaffected (increased).

in the US CN than in the usual CN10, follows for the forward scattering. We estimate that the
long range interaction in the US CN is reduced by about 7% more than in the CN10, i.e.

g̃USCN
2 ≈ 0.93

g̃CN10
2

gCN10
2

gUSCN
2 .

3.3. Screening by the zeolite matrix

A further important source of screening arises from the other nanotubes in the surrounding
zeolite matrix. As already pointed out in [32], the intra-tube Coulomb repulsion at small
momentum transfer (i.e. in the forward scattering channel) is efficiently screened by the
presence of electronic currents in neighbour nanotubes. In the experimental samples of [21] the
carbon nanotubes are arranged in large arrays with triangular geometry, behaving as a genuine
3D system. By means of a generalized random phase approximation approach, it is shown [32]
that the forward scattering parameter g2 is renormalized according to the Dyson equation

g2 → 1

2πvF

(
d

2π

)2 ∫
BZ

d2p
φ(k ≈ 0, p)

1 − �(k ≈ 0)φ(k ≈ 0, p)
, (9)

where d ≈ 1 nm is the intertube distance in the matrix whose Brillouin zone is denoted by BZ,
�(k) = 2

L

∑
q

f (εq+k )− f (εq)

εq+k−εq
, and φ(k, p) is the Fourier transform of the 3D Coulomb potential

with longitudinal momentum k and 2D transverse momentum p. The above source of screening
provides a large reduction of g2 (by a factor of ≈10−2), while the backscattering coupling g1 is
not affected appreciably [32].

We conclude this analysis by pointing out that in the superconducting samples of [21]
the long range part of the Coulomb repulsion can be reduced by a total factor of the order of
λ ≈ 10−3, while the short range one is essentially unmodified, at least in the temperature range
of the experimental conditions.
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Figure 3. The e–e repulsion. The interaction between electrons belonging to different sublattices
p 	= p′ has a short range component rather smaller than the interaction between electrons belonging
to the same sublattice p = p′.

3.4. Unscreened parameters: the short range component

As we discussed above, the short range interaction contributes to two fundamental parameters.
The first one, the backward scattering term, has to be stronger in small diameter CNs; in fact
we calculate g1 ∼ 0.067(2πvF) in CN10 (g1/g2 ∼ 0.003) and g1 ∼ 0.45(2πvF) in US CN
(g1/g2 ∼ 0.04), thus gUS

1 ∼ 6.5gCN10
1 .

The temperature Tb reported in the phase diagram of figure 1 was calculated in [4] as

kTB ∝ D exp

(
2πvF

g1

)
,

and was estimated for the CN10 in the order of Tb ∼ 0.1 mK. It follows that in US CNs Tb

should be several orders of magnitude larger than the one predicted for a CN10 with a factor
compatible with the observed critical temperature.

The coupling constant f > 0, even though it can be assumed as a forward scattering term,
strongly depends on the nanotube geometry and the short range component of the interaction.
In fact when we consider two interacting electrons at a very short distance, the fact of belonging
to the same sublattice, or not, becomes relevant as we show in figure 3. In order to calculate
f on the wrapped graphite lattice, we can start from the microscopic arrangement of carbon
atoms around the waist of the armchair SWNT. Following [4] is quite easy to demonstrate
that f ∝ 1

n for an (n, n) CN, so we obtain that it is 10/3 times larger in the US CN than in
the CN10.

3.5. Breakdown of the Luttinger approach

Now we analyse the additional forward scattering f . It corresponds to [4] δVp = U++−U+−,
where Up,p′ is the interaction between electrons belonging to different sublattices (p, p′). In
figure 3 we plot Up,p′ both for the CN10 and US CN. We observe that, because of the rapidly
oscillating phase factor, the only non-vanishing contribution to g1 comes from |x − x ′| � a [4].
Therefore, we can conclude that a local interaction is relevant in CNs. This very short range
interaction is strongly suppressed at a distance much larger than � ∼ 0.3 nm, enforcing the
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validity of a short range model (like the Hubbard one) for the small radius CN where this
contribution, f , is comparable to g2. We suppose that the LL theory, which just predicts a
charge density wave instability for g � 0.5, could not include the strong effects of the lattice
and short range component of the interaction which could be dominant in US CNs. In fact,
because of the dominance of the short range component of the electron–electron interaction,
the effects of the lattice in the US CN cannot be neglected or treated as a perturbation.

Thus we suggest the presence of an SC phase, where the lattice effects and the very
short range interaction become dominant. In our opinion this kind of system should be better
described in the Hubbard-like approach than by using the LL theory.

4. Hubbard model

The possibility of a superconducting phase in CNs in the framework of the Hubbard model has
been discussed in some papers in the past [33, 34].

Krotov and coworkers [34] used an on-site (U ) and nearest-neighbour interaction (V ) to
model the screened e–e repulsion. It follows, for slightly doped samples, that a superconducting
phase is present for values of parameters V

U < 0.55, signalling that the pure Hubbard model
(V = 0) would show superconductivity. Our previous discussions about the screening of
the interaction and the corresponding reduction of its range confirm that the superconductivity
phase is supported by the size of the US CN. Unfortunately, the approach of [34] does not allow
the estimation of the critical temperature Tc.

In [33, 35] the authors explored an electronic mechanism which per se leads to bound pairs
starting from the pure Hubbard model. The notion that pairing can arise by a purely electronic
mechanism, i.e. from purely repulsive e–e interactions, was put forth by Kohn and Luttinger
long ago [36]. They suggested that for large odd values of the relative angular momentum
two electrons could stay far enough apart from each other to take advantage of the Friedel
oscillations of the screened Coulomb potential. In the approach based on a 2D Hubbard model
the first-order Coulomb repulsion is removed by symmetry.

In [33] it was shown that the Hubbard Hamiltonian for a CN admits two-body singlet
eigenstates with no double occupancy, called W = 0 pairs. The electrons forming a W = 0
pair have no direct interaction and are the main candidates to achieve bound states in purely
repulsive Hubbard models already used for the cuprates [35].

Following the approach developed in [33] we can evaluate the superconducting gap, ,
which is strongly dependent on the size of the CN. In fact, as discussed in [4] and references
therein [34, 37], in the language of the Hubbard-like models we have f ∝ U , thus the on-site
Coulomb interaction U can be assumed to be proportional to 1/n. Thus the energy gap  can
be estimated to be about 3 orders of magnitude greater in the US CN than in the CN10. In the
US CN away from half-filling we can evaluate the values of . The BCS theory estimates the
zero-temperature energy gap

(0) ≈ 1.76kBTc,

thus for a US CN we are able to estimate the crossover temperature

Tc ≈ 5–50 K

of the same order as the measured one while the corresponding Tc for the CN10 is of the order
of the m−K in agreement with the discussed predictions of [4].

Now we want to discuss the consistency of the above results by using two different criteria.
In order to do this it is useful to estimate the coherence length ξc of the Cooper pairs in US CNs,
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which can be obtained by the well known relation

ξc = h̄vF

π(0)
.

We estimate ξc of some tens of nanometres, which is of the same order as the CN’s length.
The first criterion in order to establish the validity of the Hubbard model concerns the value

of the interaction at distance r ∼ ξc, which has to be many times smaller than the energy gap
,

λe2

ξc
� (0).

In our case this condition is verified (λ ∼ 10−3) because of the strong screening, especially due
to the zeolite matrix.

The second criterion in order to ensure that the electrons forming the Cooper pairs feel a
short range interaction is based on the comparison between ξc and the characteristic range of
the screened interaction � (see figure 3),

ξc 
 �.

Also this condition is fairly well fulfilled and confirms the consistency of the approach based
on the Hubbard model.

5. Conclusion

The discovery of superconductivity at 15 K in SWNTs challenges the usual phonon mechanism
of superconductivity no less than the similar discovery of superconductivity [38] at 6.5◦ in
C6Yb and at 11.5◦ in C6Ca intercalated graphite. In both cases the possibility that the electrons
themselves provide the driving force must be taken into account. This means that it should be
possible in some fashion to go all the way from the e–e repulsion to an effective attraction and
to bound pairs. This is a time-honoured dream that potentially has conceptual appeal as well
as important practical implications, but a convincing mechanism must predict which properties
of the material are important to produce superconductivity. For instance, one could consider
replacing phonons by plasmons in the usual mechanism; the weakness of such an approach
is that plasmons exist in any material, and have comparable frequencies, so everything should
superconduct at several kelvin. The W = 0 mechanism is based on the point symmetry of the
lattice and predicts pairing in cuprates and in graphite-based materials on the same grounds.
Unlike the original suggestion by Kohn and Luttinger [36], which has not yet been borne out
by experiments, SWNTs (in vacuo or in a matrix) and intercalated graphite are anisotropic
inhomogeneous systems. They are so different that the respective mechanisms can differ in
important ways, yet they have the honeycomb lattice in common, i.e. the local symmetry is the
same and leads to W = 0 pairs. The hexagonal lattice leads to pairing in a Hubbard model,
but the long range part of the repulsion must be disposed of if we want the on-site repulsion to
operate undisturbed, and here nanotubes and graphite obviously pose quite different problems;
the SWNT is the harder case to understand, since screening works better in 3D than in 1D.
In this paper we have focused on this problem and provided possible explanations based
on the residual screening effects augmented by a powerful matrix and contact contribution.
Furthermore, we pointed out that the range of the interaction must be small compared to the pair
size, but it should not necessarily be cut down to a lattice parameter. Although this proposal
clearly needs further scrutiny before being validated, we feel it is serious enough to warrant
further investigation.
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